Inhibition of tumor angiogenesis by targeting endothelial surface ATP synthase with sangivamycin.
نویسندگان
چکیده
BACKGROUND Sangivamycin, an antibiotic with anti-tumor and anti-herpes virus activities by inhibiting both DNA/RNA synthesis and protein kinase C activity, was reported to suppress selectively DNA synthesis and growth of human umbilical vein endothelial cells and their tube formation in vitro. Here, to address the potential clinical use of sangivamycin in future, we investigated its anti-angiogenic effect in in vivo chicken chorioallantoic membrane (CAM) and mouse dorsal air sac (DAS) assays, and investigated underlying mechanism. METHODS The effect of sangivamycin on blood vessel formation in CAM was observed under the microscope after treating for two days. For DAS assays, chambers fulfilled with tumor cells were implanted beneath mouse dorsal skin. After the mice were administered with sangivamycin, tumor-induced angiogenesis was observed under the microscope. The effect of sangivamycin on ATP synthesis on the endothelial cell surface was assayed by measuring ATP production with bioluminescence assay. RESULTS Sangivamycin suppressed angiogenesis within CAM down to 94-71%, which was partially blocked by simultaneous addition of a 40-fold excess of adenosine. Sangivamycin also inhibited tumor-angiogenesis in the DAS assay by 61%, and suppressed ATP production on the endothelial cell surface by 75%. CONCLUSION Sangivamycin inhibits the in vivo angiogenesis within CAM and tumor-induced angiogenesis within mouse dorsal skin, at least in part via inhibiting endothelial cell surface ATP metabolism in addition to inhibition of DNA/RNA synthesis and/or protein kinase C activity, suggesting a potential clinical use of sangivamycin as a novel anti-cancer reagent capable of targeting not only cancer cells but also endothelial cells.
منابع مشابه
Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin.
Angiostatin blocks tumor angiogenesis in vivo, almost certainly through its demonstrated ability to block endothelial cell migration and proliferation. Although the mechanism of angiostatin action remains unknown, identification of F(1)-F(O) ATP synthase as the major angiostatin-binding site on the endothelial cell surface suggests that ATP metabolism may play a role in the angiostatin response...
متن کاملMiR-103 regulates the angiogenesis of ischemic stroke rats by targeting vascular endothelial growth factor (VEGF)
Objective(s): To investigate the effect of miR-103 on the angiogenesis of ischemic stroke rats via targeting vascular endothelial growth factor (VEGF) at the molecular level. Materials and Methods: Rat models had received the middle cerebral artery occlusion (MCAO) or sham operation before grouping, and cell models of oxygen-glucose deprivation (OGD) were performed. FITC-dextran, matrigel, and ...
متن کاملIn vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies
Objective(s): Lung cancer is the main leading cause of cancer death worldwide. Angiogenesis is the main step in proliferation and spreading of tumor cells. Targeting vascular endothelial growth factor (VEGF) is an effective approach for inhibition of cancer angiogenesis. Nanobodies (NBs) are a novel class of antibodies derived from the camel. Unique characteristics of Nbs like their small size ...
متن کاملEndothelial cell surface ATP synthase-triggered caspase-apoptotic pathway is essential for k1-5-induced antiangiogenesis.
We have recently reported the identification of kringle 1-5 (K1-5) of plasminogen as a potent and specific inhibitor of angiogenesis and tumor growth. Here, we show that K1-5 bound to endothelial cell surface ATP synthase and triggered caspase-mediated endothelial cell apoptosis. Induction of endothelial apoptosis involved sequential activation of caspases-8, -9, and -3. Administration of neutr...
متن کاملModelling Tumor-induced Angiogenesis: Combination of Stochastic Sprout Spacing and Sprout Progression
Background: Angiogenesis initiated by cancerous cells is the process by which new blood vessels are formed to enhance oxygenation and growth of tumor. Objective: In this paper, we present a new multiscale mathematical model for the formation of a vascular network in tumor angiogenesis process. Methods: Our model couples an improved sprout spacing model as a stochastic mathematical model of spro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Japanese journal of clinical oncology
دوره 37 11 شماره
صفحات -
تاریخ انتشار 2007